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Jump Intensities, Jump Sizes, and the Relative Stock

Price Level

Abstract

Large stock price movements are modeled as jumps in the stochastic processes of stock

prices. In the current literature, the jump intensity is typically specified in models as a

function of the current diffusive volatility and past jump intensities, while the jump size is

assumed to be independent of the jump intensity. We use a nonparametric jump detection

test to identify jumps in several stock indexes and examine the determinants of the jump

intensity and the jump size. We find little evidence that the jump intensity depends on

the current diffusive volatility. Instead, the jump intensity and the jump size depend on

the current stock price level relative to its historical average, beside past jump intensities.

The results in this paper provide new perspectives for modeling jumps in the theory of

options pricing and in the applications of risk management.



1. Introduction

Large stock price changes, especially large price declines, are important events for market

participants. While large price changes are rare, they have significant impact on the

welfare of investors. Predicting the timing and the size of large price movements has

important implications to investment and risk management. There is a growing literature

on the modeling of large price changes and much has been learned. Because large price

changes are rare, their properties are more difficult to analyze. As a result, there is no

consensus on how large price changes should be modeled. We address the issue in this

paper.

Since the properties of large price changes are very different from the usual ones, large

price movements are modeled separately from the usual price changes. In the continuous-

time options pricing literature, large price changes are models as a jump process. It is in

the options pricing literature that researchers came to realize the necessity of adding jumps

to the stochastic processes of the underlying stock prices. Without jumps, the models

of stock prices with diffusive stochastic volatility only have a difficult time to generate

theoretical options prices that can be matched with observed market prices. In standard

jump-diffusion models used by, for example, Bates (2000), Pan (2002), and Eraker (2004),

the jump intensity is modeled as an affine function of the diffusive variance of stock returns

and the jump size follows a distribution independent of other state variables. Andersen,

Benzoni and Lund (2002) empirically investigate this type of models using equity index

returns.

Another strand of the literature borrows from the success of the discrete-time GARCH

literature in modeling the total volatility of asset returns. Like the total volatility, large

price movements in stock indexes tend to occur in clusters. Aı̈t-Sahalia, Cacho-Diaz and

Laeven (2011) propose a continuous-time model of asset returns where jumps are self-

excited. In their model, the jump intensity follows a Hawkes process in which past and

contemporaneous jumps increase the current jump intensity. Yu (2004) estimates a jump-
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diffusion model in which the jump intensity is stochastic and follows an autoregressive

process. Christoffersen, Jacobs and Ornthanalai (2011) propose a discrete-time model

with a GARCH type of dynamics for the jump intensity.1 In that model, the conditional

jump intensity is a function of the jump intensity and the jump size in the previous period.

Chan and Maheu (2002) and Maheu and McCurdy (2004) propose a discrete time model

of asset returns with an autoregressive jump intensity. In summary, the above papers

propose models where the current jump intensity is linked to the past jump activities.

In this paper, we use a nonparametric approach to detecting jumps and examine

the relationship between the detected jumps and pre-determined variables such as the

diffusive volatility, and past jump intensities. We also propose a new state variable, the

stock price level relative to its historical average, to forecast jumps. Our basic findings

can be summarized as follows. First, we find little evidence that the jump intensity is

related to the diffusive volatility, as specified in the standard jump-diffusion models. Both

the past jump intensity and the relative stock price level are useful in determining the

jump intensity, and the relative stock price level is useful in determining the jump size.

The jump size is not independent of the jump intensity. More specifically, we classify the

jumps into positive jumps and negative jumps, and find that the relative stock price level

is particularly useful for predicting negative jumps. We also classify jumps according to

whether they follow other jumps or they are out of the blue. While both the past jump

intensity and the relative price level are useful in predicting jumps, their roles are different

for different types of jumps. The past jump intensity can predict follow-on jumps, but,

by design, it is not useful in predicting out-of-the-blue jumps. Negative out-of-the-blue

jumps can be predicted by the relative price level, while positive out-of-the-blue jumps

are simply difficult to predict.

Our methodology has certain advantages over the ones in the existing literature. First,

we do not rely on specific parametric models. Jumps filtered from parametric models

1The jump in discrete-time models refers to the price movements that are more left-skewed and/or
more fat-tailed than the conditionally normal variates.
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are sensitive to the models used, and parametric models are subject to the criticism

of model mis-specification so that jumps identified from those models are not reliable.

More importantly, we do not require assumptions on the jumps size distribution and its

relationship with the jump intensity, whereas in the existing literature, the jump size is

typically assumed to follow the normal distribution as in Andersen, Benzoni and Lund

(2002), Bates (2000), Chan and Maheu (2002), Christoffersen, Jacobs and Ornthanalai

(2011), Eraker (2004), Maheu and McCurdy (2004) and Pan (2002), or double exponential

distribution as in Aı̈t-Sahalia, Cacho-Diaz and Laeven (2011) and Kou (2002), with fixed

parameters, and independent of the jump intensity.

Second, using the relative stock price level as an additional state variable contributes to

the literature significantly. The past jump intensities have been found useful in predicting

follow-on jumps, but they are not very useful in predicting the out-of-the-blue jumps,

which are arguably more important for market participants to predict. The relative stock

price level is particularly useful in this situation. It, therefore, complements the past jump

intensities in predicting jumps. This finding is related to Chen, Hong and Stein (2001)

who examine the predictive power of trading volume and past returns on the conditional

skewness of return distributions. In their time-series analysis, they find some evidence that

past returns negatively predict skewness for the aggregate market. In a cross-sectional

study, Yu (2011) finds that stocks with higher past returns tend to crash more during the

US equity market flash crash on May 6, 2010. Although the past return is quantitatively

similar to the relative stock price level, our work is different from theirs in the sense that

we examine the predictive power of the relative stock price level on quantities directly

related to jumps, rather than skewness in general. While the predictive power of the

relative stock price level for negative jumps can be easily interpreted in the parlance of

bubbles and crashes, we focus on documenting the relationship in this paper and leave its

interpretation to future work.

The rest of the paper is organized as follows. Section 2 discusses the nonparametric
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jump detection methods, provides descriptions of detected jumps in stock indexes, and de-

fines the predictive variables. Section 3 presents the basic results regarding the predictive

power of the diffusive volatility, past jump intensities, and the relative stock price level.

Section 4 shows the complementary features of the past jump intensities and the relative

stock price level in predicting the follow-on jumps and out-of-the-blue jumps. Section 5

reexamines the inability of the diffusive volatility in predicting jumps and reconciles the

finding with those in the literature. Section 6 concludes the paper.

2. Jump Detection Tests and Predictive Variables

2.1. Jump Detection

We focus on the Poisson type of jumps, which are infrequent and in large magnitude, rather

than the infinite activity jumps that are used to model high frequency data. We use daily

data of the S&P 500 index (SPX) from 1950 to 2011 and the NASDAQ composite index

(NDX) from 1971 to 2011 to conduct the empirical analysis. The data are downloaded

from Yahoo! Finance.

There are several nonparametric jump detection tests in the literature. Barndorff-

Nielsen and Shephard (2004, 2006) propose a bipower variation measure to separate the

diffusive variance from the jump variance. Jiang and Oomen (2008) propose a jump

detection test based on variance swap prices. Lee and Mykland (2008) develop a rolling

jump detection test based on large increments relative to the instantaneous volatility.

The test proposed by Aı̈t-Sahalia and Jacod (2009) is based on power variations sampled

at different frequencies. Except for the Lee and Mykland (2008) test, other tests are

applied to a block of return observations, so the number (except zero) and exact timing

of the jumps in the block are not known. The Lee and Mykland (2008) test is applied

to individual return observations so that the exact timing and sign of jumps can be

identified. Because of this property, we apply the Lee and Mykland (2008) test for the
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jump detection. The test statistic is based on

Lt =
|rt|√
Dt−1

, (1)

where rt = St −St−1 is the daily log return at day t, St is the logarithm of the index level

at day t, and Dt−1 is the estimated diffusive variance for day t by the bipower variation

based on past returns up to day t− 1. The null hypothesis of no jump at day t is rejected

if Lt is greater than the critical value of the test. We adopt the rejection region of the

maximum of n test statistics as in Lee and Mykland (2008), and the test is applied to

each day on a rolling basis. n is chosen to be 22, the number of return observations in

a month in this study. The significance level of the test is 0.01. Let Jt = 1 if there is a

jump at day t, and Jt = 0 otherwise. We also define a negative jump and a positive jump

as J−
t = Jt1{rt<0} and J+

t = Jt1{rt>0}, respectively, where 1{·} is an indicator function.

The summary statistics of Jt, J
−
t and J+

t are shown in Panel A of Table 1. For SPX,

the average jump intensity is 0.584%, and negative jumps are twice as frequent as positive

jumps. For NDX, the average jump intensity is 0.65%, slightly higher than that of SPX.

Negative jumps account for nearly 87% of all the jumps. The standard deviations are also

reported. Since the means are all close to zero, the standard deviations are approximately

equal to the squared-root of the means.

Table 1 here

For the days with Jt = 1, we define the jump size Zt = rt, otherwise Zt is undefined.

We denote the size of a negative jump and a positive jump by Z−
t and Z+

t , respectively.

For both of SPX and NDX, the mean jump size is negative. The negative jumps are in

larger magnitude, more variable, more skewed, and have fatter tails than do the positive

jumps.

Beside distinguishing between positive and negative jumps, we also distinguish between

jumps that occur suddenly without any jumps in the recent past and jumps that occur
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following other jumps. We classify jumps into two groups: out-of-the-blue jumps and

follow-on jumps, denoted as JO
t and JF

t , respectively. A jump is defined as an out-of-the-

blue jump if there are no jumps in the previous 60 trading days. Otherwise, the jump

is defined as a follow-on jump. The choice of 60 days is admittedly a bit arbitrary. The

robustness of the result will be briefly discussed in due course.

Panels B and C of Table 1 provide descriptive statistics of the two types of jumps. For

SPX, the mean intensity of JO
t is 0.366%, higher than that of JF

t of 0.257%. For NDX,

the mean intensity of JO
t is 0.369%, also higher than that of JF

t of 0.281%. We further

classify JO
t and JF

t by the sign of the jumps. Denote the negative out-of-the-blue jump,

the positive out-of-the-blue jump, the negative follow-on jump, and the positive follow-

on jump by JO−
t , JO+

t , JF−
t and JF+

t , respectively. Negative jumps are more frequent

regardless the type of the jumps. The sizes of the two types of jumps are also shown in

Table 1. The results suggest that the follow-on jumps are more negative on average, move

variable, more negatively skewed and have fatter tails than the out-of-the-blue jumps do.

The top panel of Figure 1 shows the time series plot of rtJt for SPX. Jumps appear in

clusters. Many jumps occur in the periods from 1950s to early 1960s, from late 1980s to

early 2000s, and in recent years. Other periods are relatively quiet. Jump sizes also vary

significantly over time.

Figure 1 here

The top panel of Figure 2 shows the time series plot of jump size of NDX. From late

1970s to early 1990s, the jump intensity is high, and sizes of jumps are relatively small,

except for a few cases.

Figure 2 here
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2.2. Predictive Variables

We use the following variables to predict jumps in this study: the diffusive variance of

asset returns, the past jump intensity, and relative stock price level. The choice of the

diffusive variance and the past jump intensity is motivated by the existing literature.

In the options pricing literature, as we discussed earlier, the conditional jump intensity

is modeled as an affine function of the diffusive variance. In the second strand of the

literature, the conditional jump intensity is positively related to the past jump intensity.

A new variable proposed in this paper to capture the variation of the jump intensity is

the relative stock price level. We discuss these predictive variables in turn.

The bottom panel of Figure 1 shows the time series plot of the diffusive volatility,
√
Dt,

of SPX. The diffusive volatility is high around the 1987 crash. However, high diffusive

volatility is not always associated with a large number of jumps. In mid 1970s, from late

1990s to early 2000s, and during the 2008-2009 crisis, when the diffusive volatility is the

high, only few jumps are observed. The bottom panel of Figure 2 shows the time series

plot of the diffusive volatility,
√
Dt, of NDX. During the period of the 1970s to the early

1990s, the diffusive volatility stays at low levels most of the time except around the 1987

crash. In the later period, jumps are infrequent but tend to be in large magnitudes, and

the diffusive volatility is relatively high.

We define the moving average of jump intensity J̄t as

J̄t = αJ J̄t−1 + (1− αJ)Jt. (2)

The smoothing parameter αJ is chosen so that J̄t is the best linear predictor of the

occurrence of a jump on the next day. Specifically, αJ , together with a0 and a1 are chosen

by minimizing
∑T−1

t=1 [Jt+1 − a0 − a1J̄t(αJ)]
2. The estimated values of αJ are 0.9984 and

0.9966 for SPX and NDX, respectively. We also define the moving average of intensities
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of negative jumps and of positive jumps, respectively, as

J̄−
t = αJ J̄

−
t−1 + (1− αJ)J

−
t (3)

J̄+
t = αJ J̄

+
t−1 + (1− αJ)J

+
t . (4)

By doing so, we can investigate the predictive power of past intensities of negative jumps

and of positive jumps separately.

Figure 3 shows the time series plots of J̄t, J̄−
t , and J̄+

t for SPX. There are large

variations in jump intensities over the sample period. J̄t has two peaks, one in late 1950s

and another in mid 1990s, and it is near zero in late 1970s and mid 2000s. The patterns

of J̄−
t and J̄+

t are similar to that of J̄t. The level of J̄−
t is often higher than that of J̄+

t

because negative jumps are more often than positive jumps are.

Figure 3 here

The time series plots of J̄t, J̄
−
t , and J̄+

t for NDX are shown in Figure 4. Since majority

of jumps are negative, J̄−
t is much higher than J̄+

t is, and J̄−
t exhibits a similar pattern as

J̄t does. Similar to SPX, the values of J̄t and J̄−
t for NDX increase rapidly in late 1970s

and late 1980s, and they drop slowly since then. The values of J̄t and J̄−
t for NDX are

close to zero in late 1990s, whereas for SPX, the values are still moderately high until mid

2000s.

Figure 4 here

We define the relative stock price level as follows. We first define the moving average

of the stock price level, Xt, by

Xt = αXXt−1 + (1− αX)St. (5)

The relative stock price level, Yt, is defined as

Yt = St −Xt, (6)
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where the smoothing parameter, αX , is estimated together with a0 and a1 by minimizing∑T−1
t=1 [Jt+1 − a0 − a1Yt(αX)]

2. The estimated values of αX are 0.9985 and 0.9981 for SPX

and NDX, respectively.

The time series plots of St, Xt and Yt for SPX are shown in Figure 5. Since St is

increasing in general in the sample period, Yt tends to be positive. Yt becomes negative

when there are sudden and sharp drops in St. There is a general decreasing trend in Yt

from 1950s to mid 1970s, a increasing trend from then to late 1990s, and Yt deceases again

until late 2000s. It suggests that jumps are likely to occur when the value of Yt is high.

Figure 5 here

The time series plots of St, Xt and Yt for NDX are shown in Figure 6. The time

series pattern of Yt for NDX is similar to that for SPX for the same sample period. The

noticeable difference between the two indexes is that Yt for NDX is only moderately high

before the 1987 crash and it is the highest before the burst of the internet bubble in 2000,

whereas Yt for SPX is about equally high for these two periods.

Figure 6 here

3. Predicting Jumps

3.1. Jump Intensities

In this subsection, we examine the predictive power of Yt, J̄t, J̄
−
t , J̄

+
t and Dt on the

conditional jump intensity by running the following logit regression,

P (Jt+1 = 1|Ut) =
1

1 + e−(β0+Utβ)
(7)

P (Jt+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)
, (8)

where Ut = (Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄

−), J̄+
t /σ(J̄

+), Dt/σ(D)) with σ(·) indicating the

standard deviation, and β = (β1, β2, β3, β4, β5)
′.

9



The results for the predictive power on the jump intensity are shown in Table 2. The

coefficient estimates for β are reported in the first row, and the corresponding t-statistics

are reported in the parentheses. The average marginal effects, PUi
=

∑T−1
t=1 ∂P (Jt+1 =

1|Ut)/∂Uit/(T − 1), multiplied by 1000, are reported in the square brackets. The results

suggest that for SPX, in simple regressions, both Yt and J̄t are positively and significantly

related to the future jump intensity, whereas Dt is negatively and significantly related to

the future jump intensity. In multiple regressions, Yt and Dt are still significant, but J̄t

becomes insignificant. For the economic significance, the results indicate that when Yt is

used alone in the regression, a one-standard-deviation increase in Yt leads to an increase

of 0.219% on average in the probability of a jump on the next day. The number can be

compared with the mean jump intensity of 0.584%. In multiple regressions, the number is

reduced to 0.17-0.18%. The predictive power of J̄t is lower than that of Yt. In the simple

regression, the marginal effect is 0.173%, and in multiple regressions, the number drops

below 0.1%.

Table 2 here

The results on Dt is in contrast to the options pricing literature where the relation

between jump intensity and diffusive volatility is found to be positive. The negative

relation found here is due to the mechanical reason that Dt is also used in detecting

jumps. Since the diffusive variance shows up in the denominator in (1), positive errors

in the estimation of the diffusive variance can lead to the failure to identify true jumps,

and negative errors can lead to finding false jumps, which results in a spurious negative

relation between diffusive variance and jumps. The large magnitude of the marginal effect

of Dt is also due to the large standard deviation of Dt, which is the result of its highly

skewed distribution. We will investigate this issue in detail in Section 5.

For NDX, the predictive power of past jump intensities is particularly strong evidenced

by the high values of coefficients and t-statistics. The results suggest that jumps are more
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clustered for NDX than for SPX. A one-standard-deviation increase in J̄t leads to an

increase of 0.316% on average in the probability of a jump on the next day, which is

about half of the mean jump intensity (0.65%). J̄−
t and J̄+

t also tend to be positively and

significantly related to the future jump intensity. Yt is significantly and positively in the

simple regression, however, it becomes insignificant in multiple regressions. Nevertheless,

a one-standard-deviation increase in Yt leads to an increase of more than 0.1% in the

probability of a jump on the next day. Dt is negative and significant for the same reason

as explained above.

To examine the predictive power of those variables on the future intensity of negative

jumps and positive separately, we run the following logit regression,

P (J∗
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)
(9)

P (J∗
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)
, (10)

where J∗
t+1 = J−

t+1, the negative jump, or J∗
t+1 = J+

t+1, the positive jumps. The results for

the negative jump are shown in Panel A of Table 3. For SPX, Yt has a strong predictive

power on the intensity of negative jumps, and J̄t becomes insignificant. For NDX, since

majority of jumps are negative, the results for the predictive power on the intensity of

negative jumps are similar to those for the total jump intensity except that Yt becomes

stronger. J̄t still has a higher predictive power. The results for the positive jump are

shown in Panel B of Table 3. For SPX, only J̄t is positively and significantly related to

the intensity of positive jumps. For NDX, none of the variables have strong predictive

power on the intensity of positive jumps because of the low frequency of positive jumps.

Table 3 here

From Table 3, we observe that Yt is positively related to the intensity of negative

jumps and it also tends to be negatively related to the intensity of positive jumps. The

results suggest that Yt can predict not only the jump intensity, but also the sign of jumps.
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To capture this effect, we consider the following ordered logit regression,

P (Js
t+1 = −1|Ut) =

1

1 + e−(β−
0 +Utβ)

(11)

P (Js
t+1 = 0|Ut) =

1

1 + e−(β+
0 +Utβ)

− 1

1 + e−(β−
0 +Utβ)

(12)

P (Js
t+1 = 1|Ut) = 1− 1

1 + e−(β+
0 +Utβ)

, (13)

where Js
t is a signed jump, defined as, Js

t = −1 if there is a negative jump at day t, Js
t = 1

if there is a positive jump at day t, and zero otherwise.

The results are shown in Table 4. For SPX, as expected, Yt is positive and sig-

nificant. J̄t is negative and insignificant in the simple regression, but becomes sig-

nificant in multiple regressions. Dt also becomes insignificant. To measure the eco-

nomic significance, we define two marginal effects, one for a negative jump and one for

a positive jump. Specifically, we define the marginal effect of a negative jump, and

of a positive jump, respectively by P−
Ui

=
∑T−1

t=1 ∂P (Js
t+1 = −1|Ut)/∂Uit/(T − 1), and

P+
Ui

=
∑T−1

t=1 ∂P (Js
t+1 = 1|Ut)/∂Uit/(T − 1), both multiplied by 1000. The results suggest

that Yt and J̄t are economically significant. Take the regression with Yt and J̄t as inde-

pendent variables as the example. A one-standard-deviation increase in Yt (J̄t) leads to

an increase (a decrease) of 0.145% (0.108%) in the probability of a negative jump and a

decrease (an increase) of 0.075% (0.056%) in the probability of a positive jump on the

next day. Note that for SPX, the mean intensity of negative and positive jumps are merely

0.385% and 0.199%, respectively. For NDX, Yt is positive and significant, and the effect

is stronger than that in Table 2, suggesting that Yt better predicts signed jumps than

unsigned jumps. J̄t is still positive and significant, and has the highest predictive power.

However, the effect is opposite to that for SPX.

Table 4 here
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3.2. Jump Size

In this subsection, we examine the predictive power of the predictive variables on the

jump size. The scatter plots of the jump size on day t+1, Zt+1, against the relative level

Yt and against the past jump intensity J̄t are shown in Figure 7.

Figure 7 here

The figure shows that there is a general decreasing relation between the jump size and

Yt. The effect is particularly strong for NDX. The scatter plots of Zt+1 against J̄t show

no clear relation between the past jump intensity and the jump size.

To quantify the relations, we run the following OLS regression

Zt+1 = γ0 + Utγ + εt+1, (14)

where γ = (γ1, γ2, γ3, γ4, γ5)
′. Table 5 reports the coefficient estimates for γ multiplied by

1000 in the first row, and the corresponding t-statistics adjusted for heteroscedasticity in

the parentheses. For SPX, Yt is significantly and negatively related to Zt+1, suggesting

when the relative level is high, jumps tend to be negative in large magnitude or positive

in small magnitude. The effect of Dt is also negative and significant. This is partially

due to the definition of the jump detection test and that majority of jumps are negative.

J̄t is insignificant in the simple regression, but gains some explanatory power in multiple

regressions. The economic significance of these variables can be examined by comparing

the estimates of γ with the standard deviation of the jump size of 3.783%, as reported in

Table 1. For the regression with Yt, J̄t and Dt as independent variables, a one-standard-

deviation change in Yt, J̄t and Dt leads to a change in Zt+1 corresponding to about 0.42,

0.27 and 2.15 standard deviations, respectively. For NDX, Yt and Dt are significantly

and negatively related to Zt+1, but J̄t becomes insignificant. For the regression with Yt,

J̄t and Dt as independent variables, a one-standard-deviation change in Yt, J̄t and Dt

leads to a change in Zt+1 corresponding to about 0.75, 0.09 and 2.21 standard deviations,

respectively.
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Table 5 here

The results suggest that a high value of Yt robustly predicts a negative jump with

a large size, and the predictive power is economically and statistically significant. Since

Yt is also the determinant of the conditional jump intensity as shown in the previous

subsection, the results cast doubts on the assumption that the conditional jump intensity

and jump size are independent.

4. Predicting Out-of-the-blue Jumps and Follow-up

Jumps

The above analysis shows that both the relative asset price level and past jump intensities

are positively associated with the conditional jump intensity. Do they play different roles

in capturing the variation of jump intensity? Past jump intensities perform very well in

the situation where jumps show a strong clustering effect such as for NDX. However, if

there are no jumps in the recent past, the values of the past jump intensities are low, and

as a result, past jump intensities may fail to predict the next jump. The relative asset

price level may perform well in this situation.

To test this conjecture, we run the following logit regression to examine the predictive

power of the predictive variables on the intensity of out-of-the-blue jumps,

P (JO
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)
(15)

P (JO
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)
. (16)

The results are reported in Table 6. Yt is significantly and positively associated with the

intensity of the out-of-the-blue jumps for SPX. In the simple regression, a one-standard-

deviation increase in Yt leads to an increase of 0.119% in the probability of an out-of-the-

blue jump on the next day, which is about 33% of the mean intensity of the out-of-the-blue

jumps. For NDX, Yt is positive, but insignificant. Nevertheless, a one-standard-deviation
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increase in Yt leads to an increase of 0.097% in the probability of an out-of-the-blue jump

on the next day, which is about 26% of the mean intensity of the out-of-the-blue jumps.

For both of the indexes, J̄t does not show any predictive power on the intensity of the

out-of-the-blue jumps. This is in contrast to the results in Table 2 where J̄t is a stronger

predictor of the jump intensity, especially for NDX.

Table 6 here

Next, we run the logit regression to examine the predictive power on the intensity of

negative and positive out-of-the-blue jumps separately, and the results are reported in

Table 7. For predicting negative out-of-the-blue jumps, Yt is positive and significant for

both SPX and NDX. The effect is economically significant as well. For the regressions

with Yt, J̄t andDt as independent variables, the marginal effect of Yt is 0.182% and 0.193%

for SPX and NDX, respectively, which corresponds to about 71% and 62% of the mean

intensity of negative out-of-the-blue jumps for SPX and NDX, respectively. Table 7 also

shows that none of the variables predicts positive out-of-the-blue jumps.

Table 7 here

To examine the predictive power on the intensity of follow-on jumps, we run the logit

regression as follows,

P (JF
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)
(17)

P (JF
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)
. (18)

The results are reported in Table 8. The effect of past jump intensities becomes much

stronger. For both the indexes, J̄t and J̄−
t are positive and significant. For the simple

regressions, the marginal effect of J̄t is 0.172% and 0.263% for SPX and NDX, respectively,

which corresponds to about 79% and 94% of the mean intensity of follow-on jumps for

SPX and NDX, respectively. The effect of Yt becomes weak. Yt is significant only for SPX

and in the simple regression.
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Table 8 here

The results for predicting negative and positive follow-on jumps are reported in Table

9. For SPX, J̄−
t is positively and significantly associated with the intensity of negative

follow-on jumps, and Yt and J̄t are positive and significant only in simple regressions. For

NDX, J̄t and J̄−
t are positive and significantly associated with the intensity of negative

follow-on jumps. All the past jump intensities are positively and significantly related to

the intensity of positive follow-on jumps for SPX, however, no variables are significant for

NDX.

Table 9 here

As we argued earlier, Yt can not only predict the jump intensity, but also the sign of

a jump. The effect should hold for out-of-the-blue jumps as well. To test this, we run the

ordered logit regression

P (JOs
t+1 = −1|Ut) =

1

1 + e−(β−
0 +Utβ)

P (JOs
t+1 = 0|Ut) =

1

1 + e−(β+
0 +Utβ)

− 1

1 + e−(β−
0 +Utβ)

P (JOs
t+1 = 1|Ut) = 1− 1

1 + e−(β+
0 +Utβ)

,

where JOs
t = −1 if there is a negative out-of-the-blue jump at day t, JOs

t = 1 if there is a

positive out-of-the-blue jump at day t, and zero otherwise. The results are shown in Table

10. For both SPX and NDX, Yt is positive and significant. The economic significance

of Yt can be seen from the marginal effects. For example, in the regression with Yt and

J̄t as independent variables, for SPX, a one-standard-deviation increase in Yt leads to an

increase of 0.108% in the probability of a negative out-of-the-blue jump (about 42% of the

mean intensity), and a decrease of 0.046% in the probability of a positive out-of-the-blue

jump (about 42% of the mean intensity). For NDX, the marginal effects are 0.121% for

a negative out-of-the-blue jump (about 39% of the mean intensity), and -0.023% for a

positive out-of-the-blue jump (about 40% of the mean intensity).
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Table 10 here

For completeness, the results for the ordered logit regression for signed follow-on jumps

are also reported in Table 10. Only J̄t and J̄−
t for NDX are significant, and most of the

effect is from predicting negative follow-on jumps.

The results in Tables 6-10 suggest that Yt and past jump intensities play complemen-

tary roles in capturing the variation of conditional jump intensities. Yt strongly predicts

initial jumps, whereas past jump intensities strongly predict succeeding jumps.

Finally, we examine the predictive power of the predictive variables on the sizes of

the out-of-the-blue jumps and of the follow-on jumps. The scatter plots in Figure 8 and

Figure 9 show that the sizes of out-of-the-blue jumps are negatively related to Yt, but the

sizes of follow-on jumps are not. The sizes of the out-of-the-blue jumps or the follow-on

jumps do not appear to be related to J̄t.

Figure 8 here

Figure 9 here

The regression results are reported in Table 11. For SPX, Yt is negative and significant,

although it is only marginally significant in the simple regression. Dt is also negative and

significant, and J̄t is positive and significant only in multiple regressions. For the regression

with Yt, J̄t and Dt as independent variables, a one-standard-deviation change in Yt, J̄t and

Dt leads to a change in the size of the out-of-the-blue jump corresponding to 0.5, 0.34,

and 1.68 standard deviations. For NDX, Yt is negative and significant, and Dt is negative

but only significant in multiple regressions. For the regression with three independent

variables, a one-standard-deviation change in Yt, J̄t and Dt leads to a change in the size

of the out-of-the-blue jump corresponding to 0.99, 0.13, and 1.23 standard deviations.

The results in Table 11 also show that Yt tends to be negatively related to the size of
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follow-on jumps, but the effect is much weaker than that for the size of out-of-the-blue

jumps.

Table 11 here

To check the robustness of the results, we consider different cutoffs for defining the

out-of-the-blue and follow-on jumps. The results are qualitatively the same for a range of

cutoffs from 50 days to 100 days. Beyond this range, the number of the out-of-the-blue

or the follow-on jumps is too few, and as a result, the statistical power of the test is low.

5. Diffusive Variance and the Bias of Jump Detection

Test

The negative relationship between diffusive variance and jump intensity found in the

previous sections may be spurious because, as argued earlier, the errors in the diffusive

variance estimation affect the detection of jumps. In this section, we use simulation to

examine the impact of the estimation error.

The data are simulated from the model

dSu =

(
µ− 1

2
D∗

u

)
du+

√
D∗

udw1,u + ZudNu (19)

d lnD∗
u = (θ − κ lnD∗

u)du+ ηdw2,u, (20)

where Su is the log asset price, D∗
u is the diffusive variance, w1,u and w2,u are standard

Brownian motions with correlation ρ, Nu is a counting process, and Zu is the jump size.

For the diffusive components of the model, the parameters estimated in Andersen et al.

(2002) on the S&P index are used: µ = 0.0304, θ = −0.012, κ = 0.0145, η = 0.1153,

and ρ = −0.6127, where the parameters are expressed in daily unit and returns are in

percentage. For the jump component, we bootstrap the jump sizes from those detected

from the actual data. Specifically, we resample with replacement from the normalized
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jump sizes of the actual data, rt/
√
Dt−1, and the jump sizes in the simulated data are the

resampled normalized jump sizes multiplied by the diffusive volatility,
√
D∗

u. The jump

intensity is specified as λ∗
0+λ∗D∗

u. We consider three sets of parameter values for different

degrees of the dependence of the jump intensity on the diffusive variance. For the first

set of parameters, (λ∗
0 = 0.01, λ∗ = 0), the jump intensity is unrelated to the diffusive

variance. For the second set of parameters, (λ∗
0 = 0.005, λ∗ = 0.015), the jump intensity

is specified as a linear function of the diffusive variance, and the degree of the dependence

is considered as moderate. For the last set of parameters, (λ∗
0 = 0, λ∗ = 0.03), the jump

intensity has the strongest relationship with the diffusive variance. We simulate 15601

days of data, which correspond to the sample size of the actual S&P 500 index data. To

reduce the discretization error from simulating the continuous-time model, 10 steps are

simulated for each day. We simulate 100 samples.

We detect the jumps from the simulated data the same way as we did for the actual

data, and estimate the following logit regression

P (Jt+1 = 1|Ut) =
1

1 + e−(β0+β1Ut)
(21)

P (Jt+1 = 0|Ut) = 1− 1

1 + e−(β0+β1Ut)
, (22)

where Ut = Dt/σ(D). Table 12 reports the 5th percentile, 50th percentile, and 95th

percentile of the average jump intensity, J̃ =
∑T

t=1 Jt/T , power and size in percent-

age, the coefficient estimate for β1, the t-statistic for β1, the average marginal effect,

PU =
∑T−1

t=1 ∂P (Jt+1 = 1|Ut)/∂Ut/(T −1), and λ1 = PU/σ(D). For the first set of param-

eters, the 95th percentile of the estimated β1 is negative, which suggests a negative bias

in the estimated relationship between the diffusive variance and the jump intensity. For

the second set of parameters, more than half of the estimated β1 become more positive.

For the third set of parameters, the median t-statistic indicates that the positive rela-

tionship is statistically significant. The results from the simulated data suggest that the

nonparametric jump detection method we adopt here leads to a negative bias in the es-

timated relationship between jump intensity and diffusive variance, the bias is moderate,
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however. The method is able to detect the positive relationship between jump intensity

and diffusive variance when the relationship is relatively strong.

Table 12 here

6. Concluding Remarks

In this paper, we examine the determinants of the conditional jump intensities and jump

sizes of the S&P 500 index and the NASDAQ composite index. Two variables for the

jump intensity suggested in the existing literature are the diffusive variance and the past

jump intensity. A new variable we propose in this paper is the price level of the index

relative to its past average.

Diffusive volatility is found to be negatively associated with future jumps. This result

is partially due to the errors in the diffusive volatility estimation in the nonparametric

jump detection test. However, simulation results show that, if the conditional jump

intensity is indeed strongly, positively related to the diffusive variance, the estimation

error does not subsume the positive relationship. Therefore, it appears that, at least,

the conditional jump intensity is not driven by the diffusive variance. This result cast

doubts on the positive relation between diffusive variance and conditional jump intensity

specified in options pricing models.

The relative asset price level is useful in predicting jumps and jump sizes. A higher

value of the asset price relative to its historical average is associated with higher condi-

tional jump intensities, especially, the intensity of negative jumps, and a larger magnitude

of negative jump size. The past jump intensity is also associated with conditional jump

intensity. The relative asset price level and the past jump intensity play different roles

in predicting future jumps. The relative asset price level predicts the so-called out-of-

the-blue negative jumps, whereas the past jump intensity predicts follow-on jumps. The

positive out-of-the-blue jumps are relatively rare and more difficult to predict.
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The results in the paper have important implications to options pricing and risk man-

agement. Empirical studies show that the existing options pricing models are still inade-

quate in explaining the volatility smile, which refers to the phenomena that the implied

volatility from the Black-Scholes formula is a smile-shaped function of the strike price.

The insufficiency of the existing options pricing models lies in their failure to capture the

dynamics of the negatively skewed and fat tailed return distribution. This paper shows

that the relative asset price level captures the dynamic features of the conditional jump

intensities and jump size distributions most successfully. This suggests that it is a promis-

ing direction to improve the performance of options pricing models by incorporating the

relative asset price level as an additional state variable.
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Table 1
Summary Statistics of Jump Intensities and Jump Sizes
This table reports the mean and standard deviation (std) of jump intensities and the
mean , standard deviation, skewness (skew) and kurtosis (kurt) of jump sizes. Numbers
reported for mean and std are multiplied by 1000. Jt = 1 if there is a jump at day t,
and zero otherwise. The superscript -/+ indicates the sign of a jump, and O/F indicates
whether it is an out-of-the-blue jump or a follow-on jump. The jump size Zt is equal to
the return at day t if there is a jump on the day, otherwise it is undefined. The results
for the S&P 500 index (SPX) and the NASDAQ composite index (NDX) are reported in
the left and right panels, respectively.

SPX NDX

A. All jumps.
Jt J−

t J+
t Jt J−

t J+
t

mean 5.84 3.85 1.99 6.50 5.63 0.87
std 76.19 61.93 44.56 80.38 74.82 29.54

Zt Z−
t Z+

t Zt Z−
t Z+

t

mean -14.18 -33.70 23.60 -22.61 -30.67 29.30
std 37.83 31.39 10.89 28.88 20.47 19.81
skew -1.93 -4.21 0.71 0.10 -2.20 1.47
kurt 12.65 26.09 2.50 5.96 8.84 4.19

B. Out-of-the-blue jumps.
JO
t JO−

t JO+
t JO

t JO−
t JO+

t

mean 3.66 2.57 1.09 3.69 3.11 0.58
std 60.37 50.60 33.01 60.62 55.64 24.12

ZO
t ZO−

t ZO+
t ZO

t ZO−
t ZO+

t

mean -13.12 -29.14 24.59 -20.85 -30.26 29.34
std 29.64 18.18 10.78 28.76 17.85 23.60
skew 0.07 -1.09 0.70 0.77 -1.66 1.39
kurt 2.45 3.04 2.47 5.49 5.76 3.49

C. Follow-up jumps.
JF
t JF−

t JF+
t JF

t JF−
t JF+

t

mean 2.18 1.28 0.90 2.81 2.52 0.29
std 46.66 35.80 29.96 52.98 50.17 17.06

ZF
t ZF−

t ZF+
t ZF

t ZF−
t ZF+

t

mean -15.95 -42.81 22.41 -24.92 -31.16 29.23
std 49.07 47.44 11.30 29.37 23.66 13.29
skew -2.40 -3.22 0.77 -0.72 -2.36 0.69
kurt 11.50 13.20 2.56 6.13 9.07 1.50
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Table 2
Jump Intensity
This table reports the results for the following logit regression

P (Jt+1 = 1|Ut) =
1

1 + e−(β0+Utβ)

P (Jt+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)

where Jt = 1 if there is a jump at day t, and zero otherwise, Ut =
(Yt/σ(Y ), J̄t/σ(J̄), J̄

−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation,
Yt is the relative level of the index, J̄t is the past jump intensity, J̄−

t is the past intensity of negative
jumps, J̄+

t is the past intensity of positive jumps, Dt is the diffusive variance, and β = (β1, β2, β3, β4, β5)
′.

The coefficient estimates for β are reported in the first row, and the corresponding t-statistics are
reported in the parentheses. The average marginal effects, PUi =

∑T−1
t=1 ∂P (Jt+1 = 1|Ut)/∂Uit/(T − 1),

multiplied by 1000, are reported in the square brackets. The results for the S&P 500 index (SPX) and
the NASDAQ composite index (NDX) are reported in the left and right panels, respectively.

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.38 0.27
( 3.41) ( 2.13)
[ 2.19] [ 1.73]

0.30 0.49
( 2.85) ( 4.60)
[ 1.73] [ 3.16]

0.12 0.22 0.37 0.22
( 1.02) ( 2.12) ( 3.15) ( 2.33)
[ 0.70] [ 1.30] [ 2.36] [ 1.44]

-1.83 -2.78
( -4.59) ( -4.52)
[ -10.84] [ -18.18]

0.30 0.16 0.19 0.46
( 2.35) ( 1.30) ( 1.28) ( 4.25)
[ 1.74] [ 0.92] [ 1.22] [ 2.99]
0.30 0.05 0.13 0.22 0.32 0.24

( 2.31) ( 0.44) ( 1.11) ( 1.45) ( 2.66) ( 2.49)
[ 1.72] [ 0.32] [ 0.75] [ 1.39] [ 2.08] [ 1.52]
0.29 0.12 -1.82 0.19 0.35 -2.53

( 2.08) ( 1.02) ( -4.29) ( 1.01) ( 2.99) ( -3.63)
[ 1.73] [ 0.72] [ -10.74] [ 1.23] [ 2.27] [ -16.38]
0.30 0.14 0.01 -1.86 0.21 0.23 0.20 -2.51

( 2.13) ( 1.14) ( 0.06) ( -4.33) ( 1.11) ( 1.76) ( 2.10) ( -3.58)
[ 1.77] [ 0.81] [ 0.04] [ -11.00] [ 1.38] [ 1.46] [ 1.27] [ -16.23]
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Table 3
Intensity of Negative and Positive Jumps
This table reports the results for the following logit regressions

P (J∗
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)

P (J∗
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)

where J∗
t+1 = J−

t+1, the negative jump, in Panel A and J∗
t+1 = J+

t+1, the positive jump, in Panel B,

Ut = (Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation, Yt

is the relative level of the index, J̄t is the past jump intensity, J̄−
t is the past intensity of negative jumps,

J̄+
t is the past intensity of positive jumps, Dt is the diffusive variance, and β = (β1, β2, β3, β4, β5)

′. The
coefficient estimates for β are reported in the first row, and the corresponding t-statistics are reported in
the parentheses. The average marginal effects, PUi

=
∑T−1

t=1 ∂P (J∗
t+1 = 1|Ut)/∂Uit/(T −1), multiplied by

1000, are reported in the square brackets. The results for the S&P 500 index (SPX) and the NASDAQ
composite index (NDX) are reported in the left and right panels, respectively.

A. J−
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.48 0.35
( 3.49) ( 2.63)
[ 1.84] [ 1.98]

0.17 0.52
( 1.30) ( 4.51)
[ 0.64] [ 2.88]

0.01 0.18 0.40 0.21
( 0.07) ( 1.34) ( 3.23) ( 2.06)
[ 0.04] [ 0.69] [ 2.23] [ 1.19]

-1.38 -2.76
( -2.77) ( -4.20)
[ -5.30] [ -15.67]

0.52 -0.08 0.31 0.48
( 3.37) ( -0.53) ( 1.92) ( 4.10)
[ 1.98] [ -0.31] [ 1.71] [ 2.69]
0.52 -0.12 0.02 0.33 0.34 0.23

( 3.33) ( -0.74) ( 0.12) ( 2.06) ( 2.65) ( 2.29)
[ 1.98] [ -0.45] [ 0.07] [ 1.85] [ 1.92] [ 1.30]
0.57 -0.12 -1.44 0.40 0.35 -2.52

( 3.38) ( -0.81) ( -2.67) ( 1.95) ( 2.81) ( -3.39)
[ 2.20] [ -0.47] [ -5.54] [ 2.23] [ 1.98] [ -14.13]
0.57 -0.05 -0.10 -1.46 0.42 0.23 0.19 -2.49

( 3.39) ( -0.29) ( -0.64) ( -2.66) ( 2.05) ( 1.72) ( 1.89) ( -3.35)
[ 2.20] [ -0.17] [ -0.38] [ -5.63] [ 2.36] [ 1.31] [ 1.05] [ -13.97]
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Table 3 (Cont’d)

B. J+
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.18 -0.26
( 0.99) ( -0.81)
[ 0.37] [ -0.23]

0.56 0.32
( 3.02) ( 1.08)
[ 1.11] [ 0.28]

0.35 0.31 0.13 0.30
( 1.73) ( 1.82) ( 0.38) ( 1.15)
[ 0.69] [ 0.62] [ 0.11] [ 0.26]

-2.55 -2.69
( -3.93) ( -1.70)
[ -5.42] [ -2.39]

-0.15 0.63 -0.46 0.45
( -0.66) ( 2.95) ( -1.24) ( 1.45)
[ -0.29] [ 1.25] [ -0.40] [ 0.40]
-0.15 0.38 0.36 -0.41 0.28 0.28

( -0.66) ( 1.85) ( 1.96) ( -1.10) ( 0.79) ( 1.04)
[ -0.29] [ 0.75] [ 0.72] [ -0.36] [ 0.24] [ 0.24]
-0.41 0.63 -2.44 -0.97 0.45 -3.17

( -1.65) ( 3.18) ( -3.79) ( -2.08) ( 1.40) ( -2.06)
[ -0.87] [ 1.33] [ -5.16] [ -0.88] [ 0.41] [ -2.87]
-0.40 0.48 0.26 -2.48 -0.96 0.25 0.31 -3.18

( -1.60) ( 2.57) ( 1.47) ( -3.85) ( -2.02) ( 0.70) ( 1.19) ( -2.08)
[ -0.84] [ 1.03] [ 0.56] [ -5.26] [ -0.87] [ 0.23] [ 0.28] [ -2.89]
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Table 4
Intensity of Signed Jumps
This table reports the results for the following logit regression

P (Js
t+1 = −1|Ut) =

1

1 + e−(β−
0 +Utβ)

P (Js
t+1 = 0|Ut) =

1

1 + e−(β+
0 +Utβ)

−
1

1 + e−(β−
0 +Utβ)

P (Js
t+1 = 1|Ut) = 1−

1

1 + e−(β+
0 +Utβ)

,

where Js
t = −1 if there is a negative jump at day t, Js

t = 1 if there is a positive jump at day t, and zero otherwise,

Ut = (Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation, Yt is the relative

level of the index, J̄t is the past jump intensity, J̄−
t is the past intensity of negative jumps, J̄+

t is the past intensity of
positive jumps, Dt is the diffusive variance, and β = (β1, β2, β3, β4, β5)′. The coefficient estimates for β are reported in the
first row, and the corresponding t-statistics are reported in the parentheses. The average marginal effects for a negative

jump, P−
Ui

=
∑T−1

t=1 ∂P (Js
t+1 = −1|Ut)/∂Uit/(T − 1), multiplied by 1000, are reported in the square brackets. The average

marginal effects for a positive jump, P+
Ui

=
∑T−1

t=1 ∂P (Js
t+1 = 1|Ut)/∂Uit/(T − 1), multiplied by 1000, are reported in the

curly braces. The results for the S&P 500 index (SPX) and the NASDAQ composite index (NDX) are reported in the left
and right panels, respectively.

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.24 0.34
( 2.23) ( 2.74)
[ 0.90] [ 1.89]
{-0.47} {-0.30}

-0.08 0.43
( -0.74) ( 3.88)
[ -0.30] [ 2.41]
{ 0.16} {-0.38}

-0.10 0.01 0.35 0.17
( -0.84) ( 0.07) ( 2.88) ( 1.57)
[ -0.38] [ 0.03] [ 1.93] [ 0.93]
{ 0.20} {-0.02} {-0.30} {-0.15}

-0.04 -0.29
( -0.34) ( -2.56)
[ -0.14] [ -1.62]
{ 0.07} { 0.25}

0.38 -0.28 0.28 0.39
( 3.12) ( -2.23) ( 2.02) ( 3.38)
[ 1.45] [ -1.08] [ 1.55] [ 2.17]
{-0.75} { 0.56} {-0.24} {-0.34}
0.38 -0.18 -0.15 0.30 0.28 0.19

( 3.08) ( -1.49) ( -1.12) ( 2.14) ( 2.18) ( 1.84)
[ 1.44] [ -0.70] [ -0.56] [ 1.67] [ 1.55] [ 1.07]
{-0.75} { 0.36} { 0.29} {-0.26} {-0.24} {-0.17}
0.39 -0.29 0.05 0.27 0.36 -0.23

( 3.14) ( -2.27) ( 0.49) ( 1.87) ( 3.11) ( -1.69)
[ 1.51] [ -1.11] [ 0.19] [ 1.49] [ 2.04] [ -1.31]
{-0.78} { 0.57} {-0.10} {-0.23} {-0.32} { 0.20}
0.39 -0.20 -0.14 0.05 0.29 0.25 0.19 -0.24

( 3.12) ( -1.56) ( -1.08) ( 0.52) ( 2.00) ( 1.97) ( 1.82) ( -1.71)
[ 1.50] [ -0.75] [ -0.54] [ 0.21] [ 1.61] [ 1.42] [ 1.05] [ -1.32]
{-0.78} { 0.39} { 0.28} {-0.11} {-0.25} {-0.22} {-0.16} { 0.21}
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Table 5
Jump Size
This table reports the results for the following OLS regression

Zt+1 = γ0 + Utγ + εt+1,

where Zt+1 is jump size on a jump day and undefined otherwise, Ut =
(Yt/σ(Y ), J̄t/σ(J̄), J̄

−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation,
Yt is the relative level of the index, J̄t is the past jump intensity, J̄−

t is the past intensity of negative
jumps, J̄+

t is the past intensity of positive jumps, Dt is the diffusive variance, and γ = (γ1, γ2, γ3, γ4, γ5)
′.

The coefficient estimates for γ multiplied by 1000 are reported in the first row, and the corresponding
t-statistics adjusted for heteroscedasticity are reported in the parentheses. The results for the S&P
500 index (SPX) and the NASDAQ composite index (NDX) are reported in the left and right panels,
respectively.

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

-10.12 -20.54
( -2.01) ( -3.15)

3.58 -2.96
( 0.95) ( -0.64)

-0.08 4.30 -2.58 -0.81
( -0.02) ( 1.05) ( -0.65) ( -0.28)

-81.03 -56.74
( -3.67) ( -2.40)

-15.58 10.61 -20.42 -0.32
( -3.05) ( 2.92) ( -3.08) ( -0.08)
-17.42 2.06 11.41 -20.61 0.31 -0.93
( -3.05) ( 0.49) ( 2.40) ( -3.09) ( 0.09) ( -0.31)
-15.98 10.10 -81.31 -21.56 -2.61 -63.81
( -3.24) ( 3.04) ( -3.88) ( -2.64) ( -0.77) ( -3.83)
-15.85 6.36 5.42 -81.66 -21.75 -1.71 -1.52 -63.82
( -3.19) ( 2.16) ( 1.63) ( -3.84) ( -2.65) ( -0.61) ( -0.65) ( -3.86)
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Table 6
Intensity of Out-of-the-Blue Jumps
This table reports the results for the following logit regression

P (JO
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)

P (JO
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)

where JO
t = 1 if there is an out-of-the-blue jump at day t, and zero otherwise, Ut =

(Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation, Yt is
the relative level of the index, J̄t is the past jump intensity, J̄−

t is the past intensity of negative jumps,
J̄+
t is the past intensity of positive jumps, and Dt is the diffusive variance, and β = (β1, β2, β3, β4, β5)

′.
The coefficient estimates for β are reported in the first row, and the corresponding t-statistics are reported
in the parentheses. The average marginal effects, PUi =

∑T−1
t=1 ∂P (JO

t+1 = 1|Ut)/∂Uit/(T − 1), multiplied
by 1000, are reported in the square brackets. The results for the S&P 500 index (SPX) and the NASDAQ
composite index (NDX) are reported in the left and right panels, respectively.

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.33 0.26
( 2.34) ( 1.58)
[ 1.19] [ 0.97]

0.02 0.12
( 0.17) ( 0.79)
[ 0.08] [ 0.45]

-0.18 0.20 -0.02 0.22
( -1.17) ( 1.40) ( -0.13) ( 1.56)
[ -0.66] [ 0.72] [ -0.08] [ 0.80]

-1.99 -2.48
( -4.08) ( -3.09)
[ -7.47] [ -9.20]

0.42 -0.19 0.25 0.07
( 2.68) ( -1.22) ( 1.47) ( 0.45)
[ 1.54] [ -0.71] [ 0.92] [ 0.26]
0.42 -0.29 0.06 0.31 -0.12 0.25

( 2.58) ( -1.76) ( 0.39) ( 1.77) ( -0.63) ( 1.82)
[ 1.52] [ -1.05] [ 0.22] [ 1.13] [ -0.44] [ 0.92]
0.44 -0.23 -2.14 0.35 -0.10 -2.50

( 2.55) ( -1.47) ( -4.04) ( 1.60) ( -0.56) ( -3.10)
[ 1.66] [ -0.86] [ -8.07] [ 1.30] [ -0.36] [ -9.29]
0.44 -0.18 -0.09 -2.15 0.41 -0.28 0.20 -2.51

( 2.51) ( -1.12) ( -0.56) ( -3.90) ( 1.82) ( -1.42) ( 1.54) ( -3.10)
[ 1.65] [ -0.67] [ -0.34] [ -8.07] [ 1.51] [ -1.03] [ 0.76] [ -9.30]
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Table 7
Intensity of Negative and Positive Out-of-the-Blue Jumps
This table reports the results for the following logit regressions

P (JO∗
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)

P (JO∗
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)

where JO∗
t+1 = JO−

t+1 , negative out-of-the-blue jump, in Panel A and JO∗
t+1 = JO+

t+1, positive out-of-the-

blue jump, in Panel B, Ut = (Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the
standard deviation, Yt is the relative level of the index, J̄t is the past jump intensity, J̄−

t is the past
intensity of negative jumps, J̄+

t is the past intensity of positive jumps, Dt is the diffusive variance, and
β = (β1, β2, β3, β4, β5)

′. The coefficient estimates for β are reported in the first row, and the corresponding

t-statistics are reported in the parentheses. The average marginal effects, PUi =
∑T−1

t=1 ∂P (JO∗
t+1 =

1|Ut)/∂Uit/(T − 1), multiplied by 1000, are reported in the square brackets. The results for the S&P
500 index (SPX) and the NASDAQ composite index (NDX) are reported in the left and right panels,
respectively.

A. JO−
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.44 0.39
( 2.63) ( 2.19)
[ 1.13] [ 1.22]

-0.03 0.12
( -0.21) ( 0.72)
[ -0.09] [ 0.38]

-0.29 0.24 -0.00 0.20
( -1.58) ( 1.43) ( -0.02) ( 1.27)
[ -0.75] [ 0.61] [ -0.01] [ 0.61]

-1.83 -2.48
( -3.09) ( -2.84)
[ -4.80] [ -7.74]

0.61 -0.35 0.39 0.06
( 3.27) ( -1.80) ( 2.12) ( 0.32)
[ 1.55] [ -0.90] [ 1.21] [ 0.18]
0.62 -0.47 0.05 0.44 -0.13 0.25

( 3.18) ( -2.32) ( 0.28) ( 2.38) ( -0.64) ( 1.63)
[ 1.58] [ -1.20] [ 0.14] [ 1.37] [ -0.41] [ 0.76]
0.69 -0.40 -2.03 0.61 -0.14 -2.59

( 3.44) ( -2.13) ( -3.19) ( 2.59) ( -0.74) ( -3.06)
[ 1.82] [ -1.05] [ -5.36] [ 1.93] [ -0.43] [ -8.13]
0.69 -0.37 -0.10 -1.99 0.67 -0.32 0.19 -2.60

( 3.37) ( -1.88) ( -0.53) ( -2.95) ( 2.79) ( -1.47) ( 1.34) ( -3.06)
[ 1.81] [ -0.96] [ -0.27] [ -5.23] [ 2.11] [ -1.00] [ 0.61] [ -8.14]
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Table 7 (Cont’d)

B. JO+
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.06 -0.39
( 0.26) ( -1.03)
[ 0.07] [ -0.23]

0.15 0.12
( 0.64) ( 0.32)
[ 0.17] [ 0.07]

0.07 0.10 -0.12 0.33
( 0.28) ( 0.41) ( -0.26) ( 1.01)
[ 0.08] [ 0.11] [ -0.07] [ 0.19]

-2.26 -2.40
( -2.68) ( -1.25)
[ -2.61] [ -1.41]

-0.02 0.16 -0.52 0.30
( -0.08) ( 0.58) ( -1.20) ( 0.75)
[ -0.03] [ 0.18] [ -0.30] [ 0.18]
-0.03 0.08 0.11 -0.46 0.09 0.30

( -0.09) ( 0.29) ( 0.41) ( -1.04) ( 0.20) ( 0.88)
[ -0.03] [ 0.09] [ 0.12] [ -0.27] [ 0.05] [ 0.17]
-0.26 0.20 -2.24 -1.06 0.31 -3.08

( -0.80) ( 0.76) ( -2.70) ( -1.95) ( 0.75) ( -1.77)
[ -0.30] [ 0.23] [ -2.60] [ -0.65] [ 0.19] [ -1.87]
-0.24 0.21 0.01 -2.28 -1.05 0.06 0.35 -3.12

( -0.75) ( 0.84) ( 0.05) ( -2.73) ( -1.89) ( 0.12) ( 1.09) ( -1.82)
[ -0.28] [ 0.24] [ 0.02] [ -2.64] [ -0.64] [ 0.03] [ 0.22] [ -1.90]
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Table 8
Intensity of Follow-up Jumps
This table reports the results for the following logit regression

P (JF
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)

P (JF
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)

where JF
t = 1 if there is a follow-on jump at day t, and zero otherwise, Ut =

(Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation, Yt is
the relative level of the index, J̄t is the past jump intensity, J̄−

t is the past intensity of negative jumps,
J̄+
t is the past intensity of positive jumps, Dt is the diffusive variance, and β = (β1, β2, β3, β4, β5)

′. The
coefficient estimates for β are reported in the first row, and the corresponding t-statistics are reported in
the parentheses. The average marginal effects, PUi =

∑T−1
t=1 ∂P (JF

t+1 = 1|Ut)/∂Uit/(T −1), multiplied by
1000, are reported in the square brackets. The results for the S&P 500 index (SPX) and the NASDAQ
composite index (NDX) are reported in the left and right panels, respectively.

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.46 0.27
( 2.54) ( 1.43)
[ 1.01] [ 0.76]

0.79 0.94
( 4.26) ( 5.59)
[ 1.72] [ 2.63]

0.63 0.33 0.82 0.26
( 3.45) ( 2.06) ( 4.71) ( 1.93)
[ 1.37] [ 0.73] [ 2.30] [ 0.72]

-1.43 -3.04
( -2.22) ( -3.35)
[ -3.14] [ -8.77]

0.11 0.75 0.11 0.93
( 0.51) ( 3.59) ( 0.42) ( 5.46)
[ 0.25] [ 1.62] [ 0.32] [ 2.61]
0.14 0.61 0.29 0.12 0.81 0.26

( 0.62) ( 3.24) ( 1.63) ( 0.44) ( 4.55) ( 1.96)
[ 0.31] [ 1.33] [ 0.63] [ 0.33] [ 2.26] [ 0.73]
0.08 0.72 -1.22 -0.05 0.90 -2.67

( 0.32) ( 3.47) ( -1.71) ( -0.15) ( 4.91) ( -2.34)
[ 0.17] [ 1.57] [ -2.67] [ -0.14] [ 2.52] [ -7.51]
0.12 0.66 0.21 -1.40 -0.05 0.79 0.23 -2.67

( 0.49) ( 3.58) ( 1.15) ( -1.99) ( -0.15) ( 4.23) ( 1.75) ( -2.33)
[ 0.27] [ 1.43] [ 0.46] [ -3.05] [ -0.14] [ 2.22] [ 0.65] [ -7.51]
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Table 9
Intensity of Negative and Positive Follow-up Jumps
This table reports the results for the following logit regressions

P (JF∗
t+1 = 1|Ut) =

1

1 + e−(β0+Utβ)

P (JF∗
t+1 = 0|Ut) = 1− 1

1 + e−(β0+Utβ)

where JF∗
t+1 = JF−

t+1, negative follow-on jump in Panel A, JF∗
t+1 = JF+

t+1, positive follow-on jump, in Panel B,

Ut = (Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation, Yt

is the relative level of the index, J̄t is the past jump intensity, J̄−
t is the past intensity of negative jumps,

J̄+
t is the past intensity of positive jumps, Dt is the diffusive variance, and β = (β1, β2, β3, β4, β5)

′. The
coefficient estimates for β are reported in the first row, and the corresponding t-statistics are reported in
the parentheses. The average marginal effects, PUi =

∑T−1
t=1 ∂P (JF∗

t+1 = 1|Ut)/∂Uit/(T −1), multiplied by
1000, are reported in the square brackets. The results for the S&P 500 index (SPX) and the NASDAQ
composite index (NDX) are reported in the left and right panels, respectively.

A. JF−
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.55 0.30
( 2.32) ( 1.49)
[ 0.71] [ 0.75]

0.58 0.97
( 2.49) ( 5.42)
[ 0.74] [ 2.44]

0.56 0.14 0.86 0.26
( 2.44) ( 0.63) ( 4.63) ( 1.83)
[ 0.72] [ 0.18] [ 2.14] [ 0.64]

-0.50 -2.99
( -0.76) ( -3.14)
[ -0.64] [ -7.73]

0.37 0.42 0.17 0.96
( 1.32) ( 1.63) ( 0.58) ( 5.29)
[ 0.47] [ 0.54] [ 0.43] [ 2.42]
0.40 0.51 0.01 0.17 0.84 0.26

( 1.46) ( 2.10) ( 0.02) ( 0.59) ( 4.45) ( 1.88)
[ 0.52] [ 0.65] [ 0.01] [ 0.43] [ 2.11] [ 0.66]
0.37 0.41 -0.31 0.03 0.93 -2.57

( 1.25) ( 1.59) ( -0.49) ( 0.10) ( 4.76) ( -2.12)
[ 0.47] [ 0.53] [ -0.40] [ 0.09] [ 2.33] [ -6.48]
0.41 0.53 -0.04 -0.51 0.03 0.82 0.23 -2.58

( 1.41) ( 2.22) ( -0.16) ( -0.71) ( 0.10) ( 4.15) ( 1.67) ( -2.11)
[ 0.53] [ 0.68] [ -0.05] [ -0.66] [ 0.09] [ 2.07] [ 0.59] [ -6.49]
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Table 9 (Cont’d)

B. JF+
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.33 0.02
( 1.19) ( 0.04)
[ 0.30] [ 0.01]

1.15 0.68
( 3.57) ( 1.35)
[ 1.03] [ 0.20]

0.78 0.60 0.53 0.26
( 2.57) ( 2.44) ( 1.00) ( 0.62)
[ 0.70] [ 0.54] [ 0.16] [ 0.08]

-2.51 -3.10
( -2.80) ( -1.19)
[ -2.46] [ -0.94]

-0.31 1.28 -0.24 0.72
( -0.84) ( 3.54) ( -0.33) ( 1.40)
[ -0.27] [ 1.15] [ -0.07] [ 0.21]
-0.30 0.84 0.69 -0.22 0.58 0.26

( -0.81) ( 2.71) ( 2.60) ( -0.30) ( 1.05) ( 0.60)
[ -0.27] [ 0.75] [ 0.62] [ -0.06] [ 0.17] [ 0.07]
-0.54 1.15 -2.34 -0.64 0.70 -3.19

( -1.49) ( 3.97) ( -2.58) ( -0.71) ( 1.30) ( -1.09)
[ -0.54] [ 1.15] [ -2.34] [ -0.19] [ 0.21] [ -0.96]
-0.52 0.83 0.54 -2.40 -0.63 0.56 0.25 -3.18

( -1.46) ( 3.16) ( 2.28) ( -2.65) ( -0.70) ( 0.99) ( 0.59) ( -1.09)
[ -0.53] [ 0.84] [ 0.55] [ -2.41] [ -0.19] [ 0.17] [ 0.08] [ -0.96]
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Table 10
Intensity of Signed Out-of-the-Blue and Follow-up Jumps
This table reports the results for the following logit regressions

P (J∗s
t+1 = −1|Ut) =

1

1 + e−(β−
0 +Utβ)

P (J∗s
t+1 = 0|Ut) =

1

1 + e−(β+
0 +Utβ)

−
1

1 + e−(β−
0 +Utβ)

P (J∗s
t+1 = 1|Ut) = 1−

1

1 + e−(β+
0 +Utβ)

where J∗s
t+1 = JOs

t+1, the signed out-of-the-blue jump, in Panel A, J∗s
t+1 = JFs

t+1, the signed follow-on jump, in Panel B,

Ut = (Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation, Yt is the relative

level of the index, J̄t is the past jump intensity, J̄−
t is the past intensity of negative jumps, J̄+

t is the past intensity of
positive jumps, Dt is the diffusive variance, and β = (β1, β2, β3, β4, β5)′. The coefficient estimates for β are reported in the
first row, and the corresponding t-statistics are reported in the parentheses. The average marginal effects for a negative

jump, P ∗−
Ui

=
∑T−1

t=1 ∂P (J∗s
t+1 = −1|Ut)/∂Uit/(T −1), multiplied by 1000, are reported in the square brackets. The average

marginal effects for a positive jump, P ∗+
U =

∑T−1
t=1 ∂P (J∗s

t+1 = 1|Ut)/∂Uit/(T − 1), multiplied by 1000, are reported in the
curly braces. The results for the S&P 500 index (SPX) and the NASDAQ composite index (NDX) are reported in the left
and right panels, respectively.

A. JOs
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.27 0.39
( 2.05) ( 2.42)
[ 0.70] [ 1.22]
{-0.30} {-0.23}

-0.07 0.08
( -0.53) ( 0.54)
[ -0.18] [ 0.26]
{ 0.08} {-0.05}

-0.22 0.14 0.01 0.12
( -1.47) ( 0.95) ( 0.08) ( 0.77)
[ -0.56] [ 0.36] [ 0.04] [ 0.38]
{ 0.24} {-0.15} {-0.01} {-0.07}

-0.08 -0.26
( -0.71) ( -1.69)
[ -0.21] [ -0.80]
{ 0.09} { 0.15}

0.42 -0.30 0.39 0.00
( 2.77) ( -1.86) ( 2.39) ( 0.02)
[ 1.08] [ -0.76] [ 1.21] [ 0.01]
{-0.46} { 0.32} {-0.23} {-0.00}
0.41 -0.31 -0.02 0.43 -0.13 0.18

( 2.63) ( -2.02) ( -0.12) ( 2.58) ( -0.67) ( 1.18)
[ 1.04] [ -0.81] [ -0.05] [ 1.34] [ -0.39] [ 0.56]
{-0.44} { 0.34} { 0.02} {-0.25} { 0.07} {-0.11}
0.42 -0.30 0.01 0.40 -0.03 -0.23

( 2.69) ( -1.85) ( 0.04) ( 2.33) ( -0.16) ( -1.48)
[ 1.08] [ -0.76] [ 0.01] [ 1.23] [ -0.08] [ -0.71]
{-0.46} { 0.32} {-0.01} {-0.23} { 0.02} { 0.13}
0.42 -0.32 -0.02 0.03 0.44 -0.16 0.18 -0.24

( 2.61) ( -2.02) ( -0.11) ( 0.23) ( 2.53) ( -0.85) ( 1.18) ( -1.53)
[ 1.07] [ -0.83] [ -0.04] [ 0.08] [ 1.36] [ -0.50] [ 0.55] [ -0.74]
{-0.45} { 0.35} { 0.02} {-0.04} {-0.26} { 0.09} {-0.10} { 0.14}
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Table 10 (Cont’d)

B. JFs
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

0.17 0.26
( 1.00) ( 1.40)
[ 0.22] [ 0.66]
{-0.15} {-0.08}

-0.09 0.85
( -0.54) ( 4.94)
[ -0.12] [ 2.12]
{ 0.08} {-0.25}

0.10 -0.21 0.74 0.22
( 0.53) ( -1.10) ( 4.17) ( 1.56)
[ 0.13] [ -0.27] [ 1.86] [ 0.56]
{-0.09} { 0.19} {-0.22} {-0.07}

0.04 -0.34
( 0.29) ( -1.99)
[ 0.06] [ -0.84]
{-0.04} { 0.10}

0.30 -0.26 0.10 0.83
( 1.53) ( -1.25) ( 0.41) ( 4.79)
[ 0.39] [ -0.33] [ 0.25] [ 2.10]
{-0.27} { 0.23} {-0.03} {-0.24}
0.33 0.03 -0.35 0.10 0.73 0.23

( 1.67) ( 0.15) ( -1.67) ( 0.43) ( 3.98) ( 1.60)
[ 0.43] [ 0.04] [ -0.45] [ 0.26] [ 1.83] [ 0.57]
{-0.30} {-0.03} { 0.32} {-0.03} {-0.21} {-0.07}
0.34 -0.27 0.10 0.06 0.83 -0.26

( 1.65) ( -1.32) ( 0.79) ( 0.23) ( 4.64) ( -1.14)
[ 0.43] [ -0.35] [ 0.13] [ 0.15] [ 2.09] [ -0.64]
{-0.30} { 0.24} {-0.09} {-0.02} {-0.24} { 0.07}
0.35 0.01 -0.35 0.08 0.06 0.72 0.23 -0.26

( 1.74) ( 0.05) ( -1.63) ( 0.55) ( 0.25) ( 3.89) ( 1.62) ( -1.14)
[ 0.45] [ 0.01] [ -0.44] [ 0.10] [ 0.15] [ 1.81] [ 0.58] [ -0.64]
{-0.32} {-0.01} { 0.31} {-0.07} {-0.02} {-0.21} {-0.07} { 0.07}
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Table 11
Size of Out-of-the-Blue and Follow-up Jumps

This table reports the results for the following OLS regressions

Z∗
t+1 = γ0 + Utγ + εt+1

where Z∗
t+1 = ZO

t+1, the out-of-the-blue jump size in Panel A, Z∗
t+1 = ZF

t+1, the follow-on jump size in Panel B, Ut =

(Yt/σ(Y ), J̄t/σ(J̄), J̄
−
t /σ(J̄−), J̄+

t /σ(J̄+), Dt/σ(D)) with σ(·) indicating the standard deviation, Yt is the relative level of

the index, J̄t is the past jump intensity, J̄−
t is the past intensity of negative jumps, J̄+

t is the past intensity of positive
jumps, Dt is the diffusive variance, and γ = (γ1, γ2, γ3, γ4, γ5)′. The coefficient estimates for γ multiplied by 1000 are
reported in the first row, and the corresponding t-statistics adjusted for heteroscedasticity are reported in the parentheses.
The results for the S&P 500 index (SPX) and the NASDAQ composite index (NDX) are reported in the left and right
panels, respectively.

A. ZO
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

-9.15 -27.43
( -1.80) ( -4.72)

3.31 1.53
( 0.73) ( 0.26)

2.54 1.30 0.18 1.54
( 0.52) ( 0.26) ( 0.03) ( 0.50)

-48.39 -40.20
( -2.99) ( -1.38)

-14.31 10.30 -29.61 6.84
( -2.43) ( 2.02) ( -5.17) ( 1.75)
-14.45 5.43 6.83 -29.73 6.77 1.05
( -2.36) ( 1.17) ( 1.15) ( -5.20) ( 1.71) ( 0.37)
-14.94 9.96 -49.65 -28.49 3.77 -35.27
( -2.85) ( 2.08) ( -3.41) ( -3.59) ( 1.08) ( -2.20)
-14.89 6.25 5.40 -49.76 -28.60 3.95 0.38 -35.23
( -2.79) ( 1.49) ( 1.10) ( -3.35) ( -3.60) ( 1.04) ( 0.16) ( -2.20)

B. ZF
t+1

SPX NDX

Yt J̄t J̄−
t J̄+

t Dt Yt J̄t J̄−
t J̄+

t Dt

-11.73 -0.50
( -1.12) ( -0.05)

9.33 -9.76
( 1.31) ( -1.17)

1.18 7.89 -7.94 -4.34
( 0.18) ( 1.16) ( -1.13) ( -0.97)

-110.49 -105.74
( -4.57) ( -3.61)

-21.43 21.34 4.68 -10.52
( -1.89) ( 2.52) ( 0.52) ( -1.22)
-26.71 4.32 19.82 3.83 -8.55 -4.36
( -1.94) ( 0.90) ( 2.10) ( 0.44) ( -1.19) ( -0.98)
-18.42 14.98 -107.40 -13.27 -5.07 -116.06
( -2.06) ( 2.92) ( -5.15) ( -1.40) ( -0.83) ( -4.18)
-15.70 12.85 4.78 -113.30 -13.74 -4.01 -2.42 -115.49
( -1.81) ( 2.37) ( 1.16) ( -5.30) ( -1.37) ( -0.73) ( -0.89) ( -4.47)
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Table 12
Simulation Analysis of Jump Detection Biases
This table reports the results for the following logit regression based on the simulated data

P (Jt+1 = 1|Ut) =
1

1 + e−(β0+β1Ut)

P (Jt+1 = 0|Ut) = 1− 1

1 + e−(β0+β1Ut)
,

where Jt = 1 if there is a jump at day t, zero otherwise, Ut = Dt/σ(D) with σ(·) indicating the standard
deviation, and Dt is the diffusive variance. The data are simulated from the model

dSu =

(
µ− 1

2
D∗

u

)
du+

√
D∗

udw1,u + ZudNu

d lnD∗
u = (θ − κ lnD∗

u)du+ ηdw2,u,

where Su is the log asset price, D∗
u is the diffusive variance, w1,u and w2,u are standard Brownian motions

with correlation ρ, Nu is a counting process, and Zu is the jump size. The jump intensity is specified
as λ∗

u = λ∗
0 + λ∗D∗

u, and sizes of the jumps are bootstrapped from the actual data. The parameters
estimated in Andersen et al. (2002) on the S&P index are used: µ = 0.0304, θ = −0.012, κ = 0.0145,
η = 0.1153, and ρ = −0.6127. The table reports the 5th percentile, 50th percentile, and 95th percentile
of the average jump intensity, J̃ =

∑T
t=1 Jt/T , power and size in percentage, the coefficient estimate for

β1, the t-statistic for β1, the average marginal effect, PU =
∑T−1

t=1 ∂P (Jt+1 = 1|Ut)/∂Ut/(T − 1), and
λ = PU/σ(D), from 100 samples, for various values of λ∗

0 and λ∗.

λ∗
0 = 0.01, λ∗ = 0 λ∗

0 = 0.005, λ∗ = 0.015 λ∗
0 = 0, λ∗ = 0.03

P5 P50 P95 P5 P50 P95 P5 P50 P95

J̃ × 103 7.40 8.69 9.94 9.20 11.07 12.71 11.45 13.38 15.31
power 61.22 66.44 73.39 62.32 68.50 73.77 63.50 69.53 74.57
size 0.15 0.21 0.29 0.15 0.22 0.28 0.14 0.21 0.30
β1 -0.66 -0.30 -0.10 -0.10 0.04 0.15 0.00 0.13 0.20
t-statistic -3.95 -2.27 -1.00 -1.16 0.49 2.34 0.07 2.28 4.13
PU × 103 -6.12 -2.56 -0.92 -1.09 0.37 1.63 0.06 1.59 2.59
λ× 103 -8.50 -4.01 -1.24 -1.84 0.54 2.78 0.02 2.55 4.30
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Figure 1. SPX jumps and diffusive volatility

The top panel shows the time-series plot of jump sizes, rtJt, and the bottom panel shows

the time-series plot of diffusive volatility,
√
Dt, of the S&P 500 index (SPX).
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Figure 2. NDX jumps and diffusive volatility

The top panel shows the time-series plot of jump sizes, rtJt, and the bottom panel shows

the time-series plot of diffusive volatility,
√
Dt, of the NASDAQ composite index (NDX).

41



1950 1960 1970 1980 1990 2000 2010
0

0.005

0.01

0.015
J̄t

1950 1960 1970 1980 1990 2000 2010
0

0.005

0.01

0.015
J̄
−

t

1950 1960 1970 1980 1990 2000 2010
0

0.005

0.01

0.015
J̄

+

t

Figure 3. SPX past jump intensities

This figure shows the time-series plots of the exponential moving average of jump intensi-

ties of the S&P index (SPX). The top panel is for the total jump intensity, J̄t, the middle

panel is for the intensity of negative jumps, J̄−
t , and the bottom panel is for the intensity

of positive jumps, J̄+
t .
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Figure 4. NDX past jump intensities

This figure shows the time-series plots of the exponential moving average of jump in-

tensities of the NASDAQ composite index (NDX). The top panel is for the total jump

intensity, J̄t, the middle panel is for the intensity of negative jumps, J̄−
t , and the bottom

panel is for the intensity of positive jumps, J̄+
t .
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Figure 5. SPX relative level

The top panel shows the time-series plot of the index level in log scale, St, and its expo-

nential moving average, Xt, and the bottom panel shows the relative stock price level, Yt,

of the S&P 500 index (SPX).
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Figure 6. NDX relative level

The top panel shows the time-series plot of the index level in log scale, St, and its expo-

nential moving average, Xt, and the bottom panel shows the relative stock price level, Yt,

of the NASDAQ composite index (NDX).
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Figure 7. Jump size vs. relative level and past jump intensity

This figure shows the scatter plots of the jump size Zt+1 against the relative stock price

level Yt and the past jump intensity J̄t. The left panels are for the S&P 500 index (SPX),

and the right panels are for the NASDAQ composite index (NDX).
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Figure 8. Size of out-of-the-blue jumps vs. relative level and past jump

intensity

This figure shows the scatter plots of the size of out-of-the-blue jumps ZO
t+1 against the

relative stock price level Yt and the past jump intensity J̄t. The left panels are for the

S&P 500 index (SPX), and the right panels are for the NASDAQ composite index (NDX).
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Figure 9. Size of follow-on jumps vs. relative level and past jump intensity

This figure shows the scatter plots of the size of follow-on jumps ZF
t+1 against the relative

stock price level Yt and the past jump intensity J̄t. The left panels are for the S&P 500

index (SPX), and the right panels are for the NASDAQ composite index (NDX).
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